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ABSTRACT

A mechanism for the generation of seismic waves is postulated that

is based on the release of shear strain dislocations. A certain probabil-

ity of release of dislocations is also postulated. From these there are

deduced expressions for the frequency distribution of shocks, energy re-

leased, etc., that are in agreement with observations. It is shown that a

random superposition of pulses such as those released by individual dis-

locations will form an accelerogram that has the appearance and properties

of recorded accelerograms. The relation between the maximum ground accel-

eration and the size of slip area is examined. It is concluded that the

existing recorded strong ground motion accelerograms are reliable samples

of possible strong ground motions.

S- ii-°



1.

INTRODUCTION

The usual type of California earthquake is associated with a

relative horizontal slipping of the two faces of a fault which lies

essentially in a vertical plane. As a consequence of this slipping,

the surface of the ground experiences a severe motion in the neighbor-

hood of the fault during large earthquakes. This surface ground motion

can be measured, and for the relatively small number of strong ground

motions that have been recorded the maximum horizontal acceleration mea-

sured was 0.33 of gravity. For obvious reasons the accumulation of data

on strong ground motion is a slow process, so that it will be many years

before a sufficiently large body of observations is amassed to give a

reasonably complete picture of what can be expected in the way of de-

structive seismic motions. Analysis of the problem is rendered difficult

by the fact that it is not possible to make direct observations of the

mechanism that generates the seismic waves for the usual California earth-

quake originates at a depth of approximately 10 miles, although in some

large earthquakes the slipping on the fault has extended to the surface

of the ground. Although direct observations cannot be made, a mechanism

for the generation of the seismic waves can be deduced. This, of course,

must satisfy certain conditions. It must be physically self-consistent,

and the surface phenomena derived from it must agree with observations

of actual earthquakes. If it does this the theory may be used with

some confidence to investigate items that have not been measured as

yet. In particular it can be used to study what can be expected over

a large number of earthquakes. In view of the fact that there is incom-

plete knowledge of the physical properties of the earth's crust at depths

of 10 miles, it is not feasible to attempt to analyze the detailed be-

havior of the subsurface phenomena; however, assuming average properties

and introducing simplifications it is possible to investigate average be-

havior.

The essence of the present theory is a postulated mechanism of

slipping along a fault that will account for the strong motions observed
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at the surface of the ground. The mechanism of slipping can be pictured

as a releasing of shear dislocations. An example of a shear dislocation,

as defined in this paper, is shown in Figures la and lb. Consider an

indefinitely extended elastic material, in the interior of which there

is a plane crack with boundary 'a' as shown in Figure la. The two abutt-

ing faces of the crack have been given a lateral displacement relative to

each other as shown in Figure lb. In order to maintain this relative dis-

placement there must exist equal and opposite shear stresses on the two

faces. These shear stresses can exist only if friction forces can be de-

veloped and this requires that compressive stresses exist in the material.

1 1 I 
Ia

Figue la Figure lb

In a typical dislocation the shear stresses on the faces of the disloca-

tion and in the adjacent material will be distributed in the manner shown

in Figures 2a and 2b. The precise form of the shear distribution will

depend upon the relative displacement of the two faces and the shape of

the dislocation. If the stressed dislocation suddenly snaps to the un-

stressed position stress waves will be propagated out from the disloca-

tion.

If a single shear dislocation were located in the earth's crust

and it were to release its stress suddenly it would generate an elemental

earthquake. Such elemental shocks have been recorded and in appearance

the seismogram is similar to one cycle of a sine wave followed by a

small oscillatory tail, as sketched in Figure 3. The pulse released by

a dislocation must be of this form for the displacement, velocity sad

acceleration of a point on the surface of the ground must return to



Figure 2a Figure Zb

Stress -Iong a line perpendicular Stress al a line in the plane
to the dislocation. of the dislocation.

zero after the pulse has passed. The reversed shear stresses outside of

the boundary of the dislocation, as shown in Figure Zb, are responsible
for the second loop of the pulse.

N j

Figure 3

If aclster of dislocations were spread dver a surface, as indi-

cated in Figure 4l there would be formed h large crack with boundary A,

which may be called a composite dslocaton. The shear stresses o the

faces of the composite dislocation, A, will vy over the area, depend-

ing upon the stresses of the incremental dislocations of which it is
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Figure 4

formed and upon the manner of superposition. The stresses associated

with a shear dislocation in an indefinitely extended solid are self-

equilibrating so that an earthquake fault may be considered to be

formed by a planar distribution of shear dislocations, that is, these

form the crack, and superposed is a state of shear produced by relative

horizontal translation of separated points of the earth's crust. The

superimposed shear strain is relieved by the release of the disloca-

tions, Their action may be thought of as being similar in nature to

the so-called "friction chattering" sometimes observed when the plane

faces of two bodies are rubbed together.

The shear stresses on the faces of a stressed dislocation are

in opposite directions on the two faces so that the shear stresses are

equal and opposite with respect to the plane of the dislocation. This

Antisymmetrical State of Stress

antisymmetrical state of stress is shown in the d.agram. When the dis-

location is suddenly released, the stress waves generated will be anti-
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symmetrical with respect to the plane of the dislocation. This means

that points on the plane of the dislocation will not undergo displace-

ment during the passage of the stress waves. As a consequence of this

it can be expected that during an earthquake the surface ground motion

will be less intense along the plane of the fault than at relatively

short distances from it. If the earth's crust were homogeneous and iso-

tropic there would be no motion on the plane of the dislocation. Geologi-

cal inhomogeneities, wave reflections, etc., will tend to mask the effect

but it can be expected that the surface intensity along the fault will be

less than would be obtained if the shear waves were symmetrical with re-

spect to the fault. Customary methods of extrapolating surface intensi-

ties of ground motions assume that the disturbances originate in a

symmetrical fashion and it has happened that these methods indicate

greater intensities along the fault near the epicenter than are actually

observed.

The stresses and strains associated with a shear dislocation

may be computed in the following manner. The stress distribution pro-

duced by a force acting at a point in an indefinitely extended solid is 1

a_-W P ) (l'2v)z(r +z2)-3/23r2 z(r2+Z2)5/2

r dx(l-)(l2~~2Z)

P 2, 232 -32

Or' 1-21-v +

, -(r 21+Z.,2Vrr2+z2 +3rz 2 r, )

3- i ec i n x-v~ 2 rZ co e,3/ y3r 2 rr si +, an )is Po s/ n ra i
where P is the force acting at the origin of the coordinate system in the
z-direction, x a r coo 9, y a r sin 0, and V Is Poissons ratio for the

material. U., G and Oz are the normal stresses in the r, 0, z direc-

tions, and Trz is the rz shea stress, r,5 and 7, being zero. The

1 S. Timoahenko, Theory of Elasticity, McGraw-Hill Book Co., New York,

1934, P9. 321.
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partial derivative of the stresses with respect to x gives the stress dis-

tribution associated with a doublet of forces as shown in the accompanying

diagram. Each force of this doublet is the resultant shear on the face

of an infinitesimal dislocation of area dydz lying in the y-z plane at

the origin. For example, the shear stress 7 rz associated with the doub-

let is

')-Px (1-2V) z2-22y + 3z2(z2 "Ix2 -4Y2

r (x +y2 )//2(222)5/2 (x2+y2)l1/2 2227/2

Along the x-axis, perpendicular to the plane of

the dislocation, Trz is equal to Txz which

is given by

7= (l- V) 1

so that the shear stress decreases inversely as

the cube of the distance from the origin. The

stresses associated with a dislocation of finite

size are obtained by integrating the expressions

for the infinitesimal dislocation. Each of the

stresses for the infinitesimal dislocation is a

function of x, y, z of the form P f(x,y,z) 'A

The appropriate integration is -

ffPf(x,y-a,z-a) dadb

where p is the intensity of shear stress on the

face of the dislocation at the point a,b, where

a is measured in the x-direction and b is measured in the z-dfrection. The

integration is to extend over the area of the dislocation. Thus the stresses

are prescribed over the faces of the dislocation and at a distance from the

dislocation the stresses will diminish inversely as the cube of the distance.
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RXABE OF DISLOCATIONS DUNG AN EARTHQUAKE

If an earthquake fault is considered to be formed by a distribu-

tion of a large number of dislocations with a superposed state of shear,

then as the stresses are built up in the earth's crust eventually the

stress at one of the dislocations will exceed the limiting stress and

that dislocation will snap. This will reduce the shear between the two

faces of that dislocation, but as can be seen from Figure Zb the release

of a dislocation will increase the shear stress on the adjacent disloca-

tions. This increase in stress may be sufficient to release an adjacent

dislocation. If a second dislocation snaps it in turn will increase the

stress on adjacent dislocations and thus trigger a third, etc. This

forms a chain reaction which may progress to cover a large area, A, of

relative slippage. The process is indicated schematically in a simpli-

fied form in Figure 5. The dislocation numbered 1 is the first to be

released, and this releases those marked 2. When these second disloca-

tions are released they increase the stress over the area formerly

occupied by number 1 and this area snaps a second time. Similarly, when

those marked 3 are released they increase the stress and cause those

marked 2 to snap a second time, which in turn causes 1 to snap a third

time. Actually, the dislocations will not snap in such an orderly manner

as here described but can be expected to snap in a rapid, darting, ran-

don fashion, but the net result, that

is, the total relative slipping, will

be essentially as described. The

process of slipping along a fault

may thus be pictured as rapid re- 3

leases of dislocations over a

spreading area with repeated re- 3

leases occurring over the area un- 3

til a position of equilibrium is

reached. The stress waves released

by a dislocation will have relatively

high velocities of propagation but the Figure

actual velocity attained by a particle

on the face of a dislocation will be small.
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THE NMCHANISK OF RELEASE

To determine precisely when and where the individual dislocations

are released during an earthquake would require a precise knowledge of

the state of stress along the fault, the properties of the material, etc.

This is clearly impossible to achieve, however, the problem may be approach-

ed from a statistical point of view. That is, a probability mechanism can

be postulated that, although not describing precisely the release of each

individual dislocation, vill describe the average properties of ensembles

of dislocations. Again, there is no way of deriving a precise specifica-

tion of the statistical problem, but this must be deduced from observa-

tions of actual earthquakes, a knowledge of the properties of rock, a

knowledge of stress distributions associated with shear dislocations of

specified type, etc. From such considerations the following mechanism is

postulated.

First, the average relative slip between the faces of a composite

dislocation of area A is taken to be proportional to the square root of A.

This statement is to be understood in a probability sense. That is, it is

not required that for every composite dislocation the average slip is pre-

cisely proportional to the square root of the are of slip, but it is only

required that the deviations from this rule may be viewed as statistical

deviations about a mean and the statements refer to the relation between

the mean slip of all earthquakes of a specified area and that area.

The statement that the average slip is proportional to the square

root of the slip area implies that the areas are geometrically similar.

Actually this can be true only for slip areas up to a certain size, for

the usual strong-motion California earthquakes originate at a 10 mile

depth and the extent of the slip area is bounded by the surface of the

ground. The growth of the slip area is also inhibited because at in-

creasing depths the physical properties of the rock approach those of a

material which flows plastically under applied stresses, and therefore

cannot maintain shear stresses of as great a magnitude as the material

nearer to the surface, although it undoubtedly can rupture in a brittle

manner under suddenly applied shear strains. It is presumed that slip

areas of increasing size will follow the geometry indicated in the
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diagram in which all slip areas smaller than 'a' are geometrically similar.

For areas sufficiently larger than 'a' it appears likely that the average

slip will be essentially proportional to the length instead of the square

root of the area. The larger slip areas are of such infrequent occurrence

that little data is available. Because of this, the following discussion

treats only slip areas of the first type and the remarks should properly

be modified where they pertain to the very large earthquakes.

Second, there is required a formulation of the probability of re-

lease of dislocations. The mechanism that controls the size of the slip

area is associated -with the distribution of static shear stress along the

fault. It is logical to assume that the distribution of shear stress

varies quite irregularly over the fault plane, that is, something like a

two dimensional, random, continuous function. The variation of stress

along a line lying in the fault plane would have an appearance similar to

the curve shown in the diagram below. As the state of shear strain builds

A A

up the stresses Increase until one of the peaks reaches the failing point.

This region will then slip and the extent of the slip will be governed by

the region of low stress surrounding the peak. When a region such as B

reaches the failing point a relatively large area of slip will result.
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The state of stress over a rectangular area of fault with dimensions

by f2 can be expressed by

T Zcm sin nXx sin mXy

and as the state of strain builds up the coefficients C increase until a

slip occurs at which time there is a sudden change in the coefficients.

The relative displacement of the two faces of the fault from the unstressed

configuration will also be irregular, but will be much smoother than the

stress distribution, and will have an appearance similar to the following

diagram. The relative displacement can also be expressed in a Fourier form

sin x sin y
i 2

It seems reasonable to assume that the B occur in such a way that the
mn

frequency of slips of various areas is inversely proportional to the area.

That is, the expected number of slips having areas lying between A and A+dA

dAis proportional to --. As will be seen, such a frequency distribution for

the areas agrees well with observations. It is possible, in principle, to

compute the detailed behavior of the coefficients C and B required formn mn

such a frequency distribution and this would give information on the prob-

able distribution of stress and strain along a fault.

Let the frequency distribution of slip areas A, be written

a0

A xE

where a0 is the lower limit of A. The total probability must equal unity,

so that

Cfdx=C log--- =1
0x

0
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1 1
C=

I x

log 1-

X0

where xI is the maximum possible value of x. The frequency distribution

of x is therefore

f -1 1 (i)
x Ixf (11log

It may be noted that there must be both an upper limit and a

lower limit for x, otherwise log Xl becomes infinite and the frequency

I

distribution does not exist. 0

The mechanism postulated above does not describe the details of a

specific earthquake but it describes an average process that should agree

with the averages of observations. The mechanism is also a simplification

in that it does not include the effects of the variation of physical para-

meters in the earth's crust. In particular, the fact that with increas-

ing depth the physical properties vary from those of an essentially

linearly elastic solid to those of a material that deforms plastically

under slowly applied strains, is not included. This means that certain

relaxation processes that are undoubtedly operative are not considered.

Also, the mechanism excludes from consideration such shocks as may arise

from processes other than horizontal slipping along essentially vertical

fault planes.

MAGNITUDE AND FREQUENCY

From the viewpoint of the dislocation theory a natural measure of

an earthquake is the average slip occurring on the fault. Accordingly, a

logarithmic measure of the average slip is taken to define an earthquake,

that is, the measure M is related to the average slip by

dS
dM-

where S is the average relative slip. In integral form this is

U eM (2)
0
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Since the average slip is proportional to the square root of the

slip area A it follows that
2M

A=A e
0

The frequency distribution of earthquakes given by equation (1)

states that the relative frequencies are inversely proportional to the

area A so the frequency distribution of shocks in terms of M is

f = ce "2M  (3)

Equation (3) may be compared with recorded data on frequency of

occurrence of earthquakes. Such data have been presented by Gutenberg

and Richter 2 who give the observed frequencies of shallow focus world

earthquakes, Southern California earthquakes and New Zealand earthquakes

as
log 1 0N = a + b (8 - M) (3a)

where N is the mean annual number per tenth magnitude, M is the magni-

tude of a shock as defined by Richter, and the coefficient b is 0°9, 0.88,

0.87 respectively. These values were obtained by plotting log N against

M and fitting a straight line to the data. The points fitted the line

closely except for magnitudes greater than 8 in which range the observed

frequencies fell below the line with an apparent upper limit for M4 of 8.7°
If the preceeding equation is put in exponential form there is obtained

for world earthquakes, Southern California earthquakes and New Zealand

earthquakes, respectively,

-2.07MN=cle

-2.02MN=c 2 e

-2.O0MN=c e

It is seen that equation (3) fits the data within the limits of observa-

tional accuracy.

2 B. Gutenberg and C. F. Richter, Seismicity of the Earth, Princeton

University Press, 1949.
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It is also seen from the foregoing that the measure of an earth-

quake as defined in this paper may be identified with the magnitude de-

fined by Richter. -He defined the magnitude as being the logarithm of the

maximum trace amplitude recorded by a certain type of seismograph located

100 kilometers from the epicenter of an earthquake. It will be shown

later that the maximum trace amplitude is proportional to the square root

of the area of slip so that the two definitions are the same.

ENERGY RELEASED

The strain energy stored in a solid by a single shear dislocation

is equal to the work that must be expended by the shear stresses acting

on the faces of the dislocation in producing the relative displacement of

the faces. The strain energy stored by a dislocation of area a is thus
n

where' T_ is the shear stress acting on the face and Sn is the relative

displacement (variable) of the two faces. The failing stress T is the

same for all dislocations, so if S and a are the average slip and averagen n
area the total energy released by N dislocations is

N
E = 2 E = CnTE n -n = a,

n=ln nn

The total energy released is thus proportional to the number N of

dislocations released. The number N is proportional to the area of slip

multiplied by the average slip, over A, so

E=C 1A S

or

E c eM (4)

This relates the energy released to the magnitude of the shock.

Equation (4) applies only to geometrically similar slip areas.

For example, a small slip area will have longitudinal and vertical dimensions

approximately equal and increasingly larger slip areas will be geometrically
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similar to this up to a certain point. The vertical dimensions of slip

areas are limited in that a slip originating at a 10 mile depth can ex-

tend upward only 10 miles, and because of the changing physical proper-

ties of the earth's crust with depth, the slip is limited in the downward

direction also. This means that the slip areas of very large earthquakes

increase principally by an elongation of the area and that the vertical

dimension of the slip area does not increase proportionally. Such slip

areas are not gecuetrically similar to the smaller slip areas and this

must be taken into account when computing the energy released. For

geometrically similar slip curves the average slip is proportional to

the length of the fault. For the smaller shocks this varies as

N=c, 'i"

However, for very large geometrically similar shocks where the slip area

receives no restraint from material above or below, the length is propor-

tional to the area, so that

S = C" A

In this case the total energy must be written

E = C e4M (4a)

There is, of course, a transition region between the limits of applicabil-

ity of equations (4) and (4a), and the latter presumably applies only to

very large shocks.

The foregoing expressions for energy released may be compared

with those derived by an alternate method by Gutenberg and Richter3.

Consider that at the epicenter the radiated energy arrives in a sinusoidal

wave train with maximum acceleration a and duration to, that is, consider

the actual accelerogram to be replaced by an equivalent sinusoidal wave

train. Assumig the total energy released to be proportional to the

energy reaching the epicenter will then give

E=Ct a 2

0 0

where a is the maximum acceleration at the epicenter. From the recorded

3 B. Gutenberg and C. F. Richter, Earthquake Magnitude, Energy Intensity
and Acceleration, Bull. Seism. Soc. Amer., Vol. 32, No.3, 1942o
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ground accelerations it is found that the following empirical expression

relates a with M0
M =2.2 + 1.8 logl1 a°

or

1.28M
0 1

As shown below, the duration may be taken to be

M
to = C2 e

2

These values give for the energy released

E - C e ° 6m  (4 c)

which agrees with equation (4).

The foregoing analysis does not include the energy carried in

the long period components that are found in very large shocks. To allow

for this Gutenberg and Richter apply the correction factor eM thus obtain-

ing
E = C e4 °o 6m (4d)

which agrees with equation (4b).

AREAS OF SLIP

According to the dislocation theory the total area of relative

slip along a fault is proportional to the square of the maximum slip. In

terms of the magnitude the area of slip is thus

A =A e (7)

This expression should be understood in a probability sense, namely, that

on the average shocks of magnitude M will have an area A corresponding to

equation (7). As was seen when discussing equation (1) there must be an

upper limit for the area A and also a lower limit. The lower limit is the

area of the smallest individual shear dislocation that can be released

under the conditions applying to an earthquake fault; the upper limit is

imposed by the fact that earthquake faults are of finite extent.
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The areas corresponding to different values of M can be compared

by means of equation (7), for example
A1  e 2(Ml - 2) (8)

A2

To investigate the implications of this equation let the shock of El

Centro, 18 May 19 4 0 be considered a typical 6.7 magnitude earthquake.

Judging from the visible surface slip it is estimated that this shock had

a slip area of approximately 40 x 20 = 800 square miles. Using this as a

base, the areas of shocks of other magnitudes are given by

A = 800 e 2 ( m - 6 7 )

This gives for a shock of magnitude M = 0, an area of slip,

A = 0.0012 sq. milesO

which is equivalent to a circular area of 210 feet diameter. As will be

seen later, from an analysis of strong motion records it appears that an

area of this order of magnitude is the lower limit in area of slippage.

The relative slip associated with an area of 210 feet diameter may be

estimated as follows. The average slip varies with magnitude according

to equation (2). For geometrically similar shocks the maximum relative

slip is given by the same expression, that is,
N

S=S e
0

The maximum surface slip of the El Centro shock was approximately 15 feet

and if the maximum sub-surface slip for a 6.7 magnitude that is the upper

bound of a range of geometrically similar shocks is taken to be the same,

the slip for shocks of smaller magnitudes is given by

S = 15 e(M-6 "7) (9)

For M = 0 this gives a maximum slip of 0.25 inches. This indicates that

the typical smallest dislocation is one of area corresponding to approxim-

ately 210 feet in diameter with a maximum relative slip between faces of

0.25 inches.

If the preceding equations are applied to a shock of 8.2 magni-

tude, such as the 1906 San Francisco earthquake, there is obtained a

total area of slip equal to 300 x 55 miles. The surface slip of the 1906
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shock disappeared into the ocean north of San Francisco but it appears

that the total slip area was of the order of magnitude of the above men-

tioned figure.

The total movement in California can be estimated by means of

the foregoing equations. If the mean annual frequency distribution of

shocks in California is taken to be the same per unit area as for South-

ern California there is obtained

f = 0.00086 e2(87-M)

The area of slip per shock according to the preceding calculation is:
2M

A = 0.0012 e sq. miles

The average relative slip over the area is approximated by one-half the

maximum slip, or

--S = 1 (0.25) eM inches.

The total mean annual slipping is given by the integral of (fAS) and if

this is assumed to be distributed uniformly over faults 30 miles deep and

700 miles long there is obtained for the mean annual relative shearing

motion of the east and west boundaries of the state

8.7 1 17. 6 mJ (o.ooo86)(0.00l2)&0(o.25) e e
S(30)(700) dM = 2.2 inches per year

This may be compared with the estimate of a mean annual relative motion

of approximately 2 inches per year that is based on triangulation surveys.

The average duration of the strong motion at the epicenter can

be.estiated from the motion of a point along the fault. Since such an

element of material undergoes a displacement it must be subjected to a

force that accelerates and decelerates. If the motion is caused by

successive releases of dislocations the force is similar for earthquakes

of various magnitudes, differing only in duration. Thus the motion of

the point can be written
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d = F(kt)
dt

T 1
=S / (kt)dt = E F(@)dO (kt = @)

0t o

0 0

C T2

from which

T =C 1 f " -c2 eM/2

where S is the maximum slip. The duration estimated from seismograms by

Gutenberg and Richter 3 is

log1 0 to = at M/4

or

to = Ce M/1.93

The foregoing values of slip areas, etc., are not exact but are

only approximations that are used to show that the formulas give reason-

able values when applied to the limits of their ranges and that they are

consistent with observations.

ACCELEROGRAMS DERIVED FROM DISLOCATIONS

When the dislocations are released along a fault area they

radiate stress pulses and it must be shown that these pulses can form

accelerations that agree with those recorded at the surface of the ground.

To show this it will be assumed that the release of dislocations sends

out elemental shocks that record as one cycle of a sine wave. It is not

essential that the pulse be exactly one cycle of a sine wave; this is only

a computational convenience. However, it is essential that the pulse be

double looped for it will be shown that it is not possible to form a

typical accelerogram with single looped pulses such as one-half cycle of

a sine wave. It is also necessary that the swarm of pulses have various
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wave lengths for it is not possible to form an accelerogram with the

properties of recorded accelerograms with a swarm of pulses all of the

same wave length. As will be seen, the pulses required are predomin-

antly of 2/10 second wave length and the shortest wave length appears

to be something of the order of 1/30 of a second. At a propagation

velocity of 0,000 feet per second a time of 1/30 second corresponds

to a distance of 330 feet so that the size of the smallest dislocation

appears to be of this order of magnitude.

It is assumed that during an earthquake the dislocations are

released over the slip area at random times so that the motion recorded

by an accelerometer is composed of a swarm of pulses random in time. To

determine the required distribution of pulse wave lengths and amplitudes

the following method of analysis is used. A recorded accelerogram is

considered to be a random continuous function and an earthquake is con-

sidered to be a random sample from a parent population. The character-

istics of a random continuous function (accelerogram) are exhibited by

its energy spectrum. The spectra have been computed for recorded strong-

motion accelerograms and the average of these spectra is taken to be

the spectrum of the parent population of strong-motion earthquakes.

The distribution of pulse wave lengths, amplitudes and numbers is de-

termined so that the spectrum of the parent population of pulses is the

same as the above-mentioned average recorded earthquake spectrum.

Consider a swarm of pulses, every one of which is represented

by the acceleration

f(t,9) =sink(t-Q)

where the times of occurrence 0 are randomly distributed over an inter-

val of time. If a certain number n, of such pulses are superimposed at

random they will form an accelerogram whose energy spectrum is given by

F(k,V) - ( (~f(t.,k.,@) sinvt dt) 2 + cf f(t,k,e )cos-vt dt)2

n n

This will, in general, be an irregular curve, but the average of a large

number of spectra from different sets of n pulses will approach a smooth

curve that charactertses the population from which the pulses were taken.
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To compute the average spectrum it is only necessary to integrate the

foregoing expression with respect to @, since the probability of 9 is

constant with respect to time. When this is done there is obtained for

the average spectrum
2

or 2

F(kV 2 ( sin 17 (10)

r

where r is the ratio of the wave length being considered on the spectrum

to the wave length of the pulses. This is shown in Figure 6, where the
square root of the spectrum is drawn. In the case of one-half sine

pulses, that is, single loop pulses, the average spectrum is

2

F(k, v)=~ (=o~. (11)

The square root of this curve is drawn also in Figure 6. These curves
are typical in that the double looped pulses produce a humped curve, where-

as the single loop pulses do not.

If an accelerogram is formed by the random superposition of pulses

of a variety of wave lengths and amplitudes, the mathematical expectation of

the spectrum is 2

sin
F(kV) L (12)

2r

where di k is the number of pulses, in the population, having wave lengths

lying between k and k + dk, and Ak is the amplitude of the pulse.

A typical earthquake spectrum is shown in Figure 7. The spectrum
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4
shown is actually the square root of the energy spectrum . When the com-

puted curves for the two components of the El Centro 18 May 19 40, El Centro

30 December 1934, and Olympia, Washington 13 April 1949 strong motion

accelerograms are averaged there is obtained a fairly smooth curve that is

closely approximated by the curve shown in Figure 8. The averaging in this

case was preceded by changing scales so that all of the individual spectra

had the same average ordinate. The curve of Figure 8 is taken to be the

square root of the average energy spectrum. It is seen that the average

spectrum has a hump and therefore cannot be derived from single loop pulses.

It can, however, be derived from double loop pulses. When equation (12) is
71 1/2

fitted to the curve of Figure 8 the values of(k Ak ) are determined,

1/2and these are shown in Figure 9. Since the numbers I1/ and the ampli-

tudes Ak occur as a product it is impossible to distinguish their separate

effects on the spectrum, for quadrupling the number has the same effect as

doubling the amplitude of the pulses. If, for example, the relative numbers

are taken to be inversely proportional to the square of their wave lengths

that is, ?jk = k 2 , the curve of Figure 9 is a graph of the actual ampli-

tude distribution of the pulses. On the other hand, if Ak is taken to be
i/2

the same for all pulses, the curve of Figure 9 shows the values of kk "

The parent population of pulses may thus be considered to be

composed of pulses of various wave lengths, having the amplitudes

and numbers as given by Figure 9. If a random sample of 71 of such pulses

is taken and the sample is distributed at random over an interval of time

an accelerogram will be formed. The average spectrum of a large number of

The random nature of earthquake ground motion was first pointed out in
Characteristics of Strong-Motion Earthquakes, Bull. Seism. Soc. Amer.
(1947) Vol.37. The spectra presented there were computed by means of
a torsion pendulum that was later discovered to have approximately 0.01
of critibal damping which was sufficient to eliminate the hump in the
average spectrum curve and reduce it to a horizontal line. Details of
spectrum calculation will be found in J. L. Alford, G. W. Housner and
R. R. Martel, Spectrum Analysis of Strong-Motion Earthquakes, Office of
Naval Research Report, Contract N6onr-244, California Institute of
Technology, August 1951.
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accelerograms obtained in this way will approach the spectrum of Figure 8.

A sample accelerogram obtained in this way will thus have the characteris-

tics of actual recorded accelerograms in so far as these are random con-

tinuous functions.

A sample accelerogram was constructed by distributing 584 pulses

over a 10 second interval, allotting 292 to each 5 second interval. To

simplify the computations, the numbers and amplitudes of pulses were taken

as shown in the following table so that the proper A/ Ak ) a
kwa

obtained, and these were distributed at random by means of a table of ran-

dom numbers. This procedure will give a somewhat more uniform looking

accelerogram than would be obtained if the pulses had been selected at

random from the population and distributed at random over a 10 second

period.

Wave Length Number Amplitude

0.1 200 5.0

0.2 100 11.0

0.3 66 4.0

o.4 50 1.5

0.5 40 1.0

0.6 33 0.58

0.7 28 0.37

0.8 25 0.25

0.9 22 0.17

1.0 20 0.12

The resulting accelerogram is shown in Figure 10. For comparison there is

shown a portion of the Olympia, Washington accelerogram in Figure 11. It

is seen that the two are very similar in appearance even to the extent that

on the average they cross the axis the same number of times per second.

It should be noted that the preceding method of superposing the

pulses actually corresponds to the time of strong motion only, that is,

when very large numbers of pulses are arriving. The earlier and later

portions of recorded accelerograus usually show many fewer pulses arriving.
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MAXIMUM ACCELERATIONS

When an accelerogram is constructed with a set of pulses in the

foregoing manner it is found that, to a considerable degree, the pulses

cancel each other and that the maximum accelerations are the result of

fortuituous superpositions of pulses. If a second accelerogram is con-

structed using the same set of pulses it will differ from the first be-

cause of the random superposition of the pulses. However, if a large

number of accelerograms are constructed using the same set of pulses

they will have certain average properties, for example, there will be

an average maximum acceleration and the maximum accelerations of the

individual accelerograms will deviate from the average with a certain

statistical distribution. In what follows, the references to accelera-

tions are to the average properties.

When the average energy spectrum is calculated for a given dis-

tribution of pulses its ordinates, as shown by equation (12), are pro-

portional to (nA 2), where n is the number of pulses and A is the ampli-

tude. On the other hand, if accelerograms are constructed from the

pulses and the spectra computed for these, the average spectrum will

have ordinates proportional to the square of the maximum acceleration

Therefore, the maximum acceleration a is proportional to the ampli-

tude of the pulses and to the square root of the number of pulses, that

is, 1

= K(n)2 A

where the number n is the pulse dens'ity at the point where the accel-

erations are measured, that is, the number of pulses per unit time.

If an increment of fault area dx dh is radiating pulses at a rate n per

unit area, the maximum acceleration at a specified point on the surface

of the gund will have a maximum acceleration

1
oL = K (n dx dh) I A (13)

If the point on the surface of the ground is sufficiently far from the

fault so that the radiation can be considered to come. from a point source

the mayiuum acceleration recorded will be the cumulative acceleration
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from the total area that is radiating, that is

M 2 = K 2 ff n2 dx dh (14)

If the radiation is the same from all points on the fault area the maxi-

mum acceleration will be

= C A(N) 2

where N is the rate of pulse radiation of the entire fault area, N is

directly proportional to the area, so the maximum acceleration OL is pro-

portional to the square root of the fault area. In terms of the magnitude

,L = Cl1e

This is essentially Richter's definition of magnitudein terms of acceler-

ation instead of displacementwhich is thus a measure of the area of slip.

For points relatively close to the fault, it is not correct to

assume point source radiation but the area of the fault must be taken into

account. A qualitative investigation of this effect may be made as follows.

Consider a fault of length 2 and vertical dimension h0 , each point of

which is radiating pulses according to equation (13). Furthermore, let

the effect of the position of the point on the surface of the ground,

where the accelerations are measured, relative to the point on the fault

be described by the inverse square law with cosine correction as given by

Gutenberg and Richter5, that is

1
=K (ndxdh) 2 A h (16)

2 2 2
x +y +h

where x, y, h are the coordinates of the point on the surface of the ground

with respect to the radiating point. The effect of the radiation frdn the

fault area can be approximated by considering the radiation from a line of

length 2 t at an equivalent depth h if the strength of the radiation is

5 B. Gutenberg and C. F. Richter, Earthquake Magnitude, Energy, Intensity
and Acceleration, Bull. Seism. Soc. Amer., Vol.32, No.3, 1942.
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taken to be proportional to ho . If, then, the maximum acceleration

is calculated for the line in accordance with equations (14) and (15)

there is obtained

1 1_ o(ho)~ " (X+2)(h 2+y,2) g_- (x-j)(h 2+y"2)

0123h) 2 1 2 20O = h ) 2 ( -t h +

2 (h2+y2)3/1 r (x+) +h2+y2  (x-) 2+h 2+y2

1

+tan l x+.k - tan - 2 (17)

where x, y, h are the coordinates of the point on the surface of the

ground as measured in a coordinate system with origin at the center of

the line, x and y being respectively parellel and perpendicular to the

line and h being the vertical distance from the center of the line to

the surface of the ground. Equation (17) describes the variation of1

seismicity over the surface of the ground. When f o with ( 0 )

constant, there is obtained for point source radiation
1

c4 = ( 0 (h0 ) 2 h2 2 (18)
(x +y +h )

which agrees with equation (15).

According to equation (12), o(= C1 e
M and according to equation

(4) the energy released is E = C2 e
3M so C4 is proportional to the cube

root of the energy and equation (18) can be written

1

hC(E) h(8a)
x 2+y 2+h

2

The same equation is derived by Gutenberg and Richter3 by using empirical

equations based on observations.

According to equation (17), if i 2 2- is smaller than

approximately 0.20 the fault may be const .ed to be a point source but

if the accelerations are measured closer to the fault than this, the effect

of the dimensions of the fault must be taken into account. For example,

consider a point directly above the center of the fault at x = 0, y = 0.
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Equation (17) is then

S1+tan2

When 1 is less than 0.2 equation (19) can be written

1 1

(h2) (2
and the radiation may be conqidered as originating from a point source.

On the other hand, when becomes greater than this the effect of the

increased length of fault upon the maximum accelerations rapidly decreases

as shown in the table. It is seen that e( calculated from equation (19)

is virtually unaffected by increase in ) beyond /h= 1.2, so that an

earthquake such as that of El Centro, 1940, for which If was approximately

20 miles and the equivalent h perhaps 10 miles, the maximum accelerations

in the vicinity of the center of the fault would not have been materially

increased for an R of 40 or more miles. Thus, as regards the effect of

area of slip, the maximum accelerations associated with the El Centro

shock are close to the maximum possible.

1

0 0

.2 .62

.4 .85

.6 .99

.8 1.o8

1.0 1.13

1.2 1.17

00 1.25
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SIIOARY

The dislocation theory considers that an earthquake fault is

formed by the superposition of a large number of incremental shear dis-

locations whose sudden release produces the earthquake. It is postu-

lated that during an earthquake the incremental dislocations are re-

leased in such a way that the average slip is proportional to the square

root of the area of slip, and that the probability of release of indivi-

dual incremental dislocations is such that the probability of a total

slip area A is inversely proportional to A. With these two postulates

a frequency distribution of earthquakes is derived that agrees with

observed data within the limits of accuracy of the data; the Richter

magnitude is shown to be essentially a logarithmic measure of the

average slip on a fault; and an expression is derived for the energy

released by an earthquake that agrees with that derived from considera-

tion of the energy carried in a wave train. Expressions are derived

also for the areas of slip during earthquakes, the maximum relative

slip, and the average annual, overall shearing distortion of the State

of California and these are in satisfactory agreement with observed

behavior. According to the theory, during an earthquake a large number

of incremental dislocations are released, each of which produces an

elemental acceleration pulse. An accelerogram is thus formed by the

superposition of a large number of elemental acceleration pulses ran-

dom in time. It is shown that this agrees with recorded accelerograms

and an accelerogram composed in this fashion is shown to have the

characteristics of actual recorded accelerograms. It is also shown

that the maximum ground accelerations in the vicinity of the center of

the fault, in so far as they are dependent upon the size of the slip

area, have essentially reached their upper limits for shocks with areas

of slip approximately equal to that associated with the El Centro, 1940

earthquake.

The fact that there is good agreement between the theory and

observations increases confidence that the relatively small number of



recorded strong ground motions are typical of the motions to be expected.

For if shocks are generated by the release of dislocations, the ground

motions must always be similar to the past recorded ground motions, that

is, the energy spectra of the ground motion must be similar, for any

radical departure would require a marked difference in the physical

properties of the earth's crust.


